Structural Biology of Photosynthetic complexes, enzymes, stress related proteins, etc. Renewable energy from direct photosynthetic activity to hydrogen conversion.

Structural Biology of Photosynthetic complexes, enzymes, stress related proteins, etc. Renewable energy from direct photosynthetic activity to hydrogen conversion.
The Technion Centre for Macromolecular Structure
Fig. 1. Crystal of Phycocyanin and it’s X-ray diffraction pattern to 1.25Å. Additional details on this system can be found in references #2, 5, 7, 8 and 9.
Research, located in the Schulich Faculty of Chemistry was established in 1995. Within this centre my students and I perform research aimed at obtaining an understanding of the structure/function relationship of biologically important molecules on the atomic level. Our major structural tool is X-ray crystallography, however we use many additional physical tools in our research. A deep understanding of complicated Biological systems can be obtained by the determination of the three dimensional structures of the molecules that participate in these system. In my lab, macromolecules are isolated and crystallized, and by using powerful X-ray beams, their three-dimensional structures are determined. Knowledge of the positions of all of the atoms, including solvent, prosthetic groups, chromophors, ligands, etc., can reveal the functional characteristics of the molecules (proteins and nucleic acids) and more intricate complexes.
Fig. 2. Schematic illustration of the use of Photosystem II in a biogenerator – for the production of molecular hydrogen gas by biological solar energy conversion. See reference #1 for details.
The lab is heavily involved in studying different aspects of photosynthesis, on the molecular level. These include light harvesting complexes (especially centred on a huge complex called the Phycobilisome), electron transfer and accessory proteins involved in complex stability (See figure 1). These interests have led to attempts to directly use natural photosynthetic membranes and complexes for the direct production of energy.
We have patented a novel “bio-generator” that can create a useful electric current using water as the electron source. The device will be completely non-polluting and thus may serve as an excellent source of clean “green” energy from the sun (see figure 2).
The lab is also heavily involved in unravelling the mechanisms of difficult biochemical systems, including metal ion transport and enzymes.
Fig. 3. The active site of the enzyme Tyrosinase with bound ligands. Details can be found in references #3 and 9.
The group has determined structures from ion transport systems, regulatory proteins and enzymes. The lab is collaborating with the Fishman group from Biotechnology on the determination of the first structures of a bacterial tyrosinase in its active form (Fig. 3: The active site of the enzyme Tyrosinase with bound ligands. Details can be found in references #3 and 9.). These are the first structures of an active enzyme.
B. Sc. in Chemistry1984,Hebrew University in Jerusalem, Israel.
Ph. D. in Biochemistry 1990, Hebrew University in Jerusalem, Israel.
Postdoctoral research 1990-1995, Dept. of Physics, Univ. of California, San Diego,USA.
Joined the Schulich Faculty of Chemistry, Technion – Israel Institute of Technologyin 1995.
1985-1990, Teaching and Advanced Teaching Assistant, Department of Biochemistry, The Hebrew University, Jerusalem, Israel
Biochemistry (Undergraduate)
Protein Isolation (Undergraduate)
1995-present, Professor, Schulich Faculty of Chemistry, Technion
General Chemistry (Undergraduate)
Principles of Chemistry (Undergraduate)
Laboratory in Principles of Chemistry (Undergraduate)
Structure and Function of Macromolecules (Graduate/Undergraduate)
Selected Topics in Structural Biology (Graduate/Undergraduate)
Biological Photochemistry (Graduate/Undergraduate)
Name | Room | Phone | |
---|---|---|---|
Avital Lahav | avitalgn@technion.ac.il | 411 | 3716 |
Shira Bar-Zvi | shirabar@technion.ac.il | 411 | 3716 |
Dvir Harris | dharris@technion.ac.il | 411 | 3716 |
Suissa maayan | sumaayan@technion.ac.il | 411 | 3716 |
Tarek Tarabeh | Ttarek@campus.technion.ac.il | 411 | 3716 |
Tunde Toth | tunde.toth@campus.technion.ac.il | 411 | 3716 |
Yaniv Shlosberg | yanivstau@gmail.com | 411 | 3716 |
Jenia Sklyar | jenia.sklyar@campus.technion.ac.il | 411 | 3716 |
Guy Lutzky | guylutzky@campus.technion.ac.il | 411 | 3716 |
Dahie Khatib | dahiek@campus.technion.ac.il | 411 | 3716 |
Raneen hijaze | Raneenhijaze@campus.technion.ac.il
|
411 | 3716 |