Research Seminar: Multi-heme Proteins: Nature’s Design and Effect of Heme-Heme Interactions
January 2nd
אולם 1
11:30
Prof. Sankar P. Rath, Department of Chemistry, IIT Kanpur
Multi-heme Proteins: Nature’s Design and Effect of Heme-Heme Interactions
S. P. Rath
Department of Chemistry, Indian Institute of Technology Kanpur,
Kanpur-208016. INDIA, E-mail: sprath@iitk.ac.in
Multiheme cytochrome constitutes a widespread class of proteins with essential functions in electron transfer and enzymatic catalysis. Their functional properties are in part determined by the relative arrangement of multiple heme cofactors. Understanding the significance of these motifs is crucial for the elucidation of the highly optimized properties of multiheme cytochromes c, but their spectroscopic investigation is often restricted by the presence of a large number and efficient coupling of the individual centers. The diheme cytochrome c (DHC2) from G. sulfurreducens is, however, the simplest member of such family, with two heme groups attached through a single polypeptide chain that are found to be different. A large number of diheme enzymes such as MauG and bacterial diheme cytochrome c peroxidases (bCcP) are also known which catalyze various important chemical transformations in biology. These attractive features have prompted us to investigate on the biomimetic model of multi-heme cytochromes as a part of our ongoing research.[1-5] This talk will highlights
References
1. a) Singh, A.; Khan, F.S.T.; Rath, S. P. Angew. Chem. Int. Ed. 2017, 56, 8849; b) Dey, S.; Rath, S. P. Angew. Chem. Int. Ed. 2016, 55, 996; c) Sil, D.; Rath, S. P. Chem. Sci., 2016, 7, 1212; d) Sahoo, D.; Rath, S. P. Angew. Chem. Int. Ed. 2015, 54, 4796; e) Ghosh, SK; Rath, S. P. J. Am. Chem. Soc. 2010, 132, 17983.
2. a) Sarkar, S.; Sarkar, P.; Pati, S. K.; Rath, S. P. ACS Catal. 2022, 12, 9589; b) Pandey, A. K.; Rath, S. P. Chem. Commun. 2019, 55, 7926; c) Kumar, A.; Usman, M.; Rath, S. P. Chem. Commun. 2019, 55, 1588.
3. a) Sanfui, S.; Sarkar, S.; Rath, S. P. Inorg. Chem. 2023, 62, 0000; b) Sanfui, S.; Usman, M.; Sarkar, S.; Rath, S. P. Inorg. Chem. 2022, 61, 8419; c) Pandit, Y. A.; Usman, M.; Sarkar, S.; Rath, S. P. Inorg. Chem. 2022, 61, 5270; d) Singh, A. K.; Sarkar, S.; Rath, S. P. Inorg. Chem. 2021, 60, 16492; e) Kumar, A.; Usman, M; Rath, S. P. Chem. Eur. J. 2021, 27, 11428; f) Singh, A. K.; Rath, S. P. Chem. Eur. J. 2020, 26, 14405; g) Kumar, A.; Usman, M.; Garribba, E.; Rath, S. P. Chem. Eur. J. 2020, 26, 7869; h) Singh, A. K.; Usman, M.; Garribba, E.; Rath, S. P. Chem. Eur. J. 2019, 25, 10098; i) Pandit, Y. A.; Rath, S. P. Chem. Eur. J. 2017, 23, 8849; j) Guchhait, T.; Pandit, Y. A.; Rath, S. P. Chem. Eur. J. 2017, 23, 10270.
4. a) Sanfui, S.; Usman, M.; Rath, S. P. J. Inorg. Biochem. 2023, 241, 0000; b) Khan, F. S. T.; Rath, S. P. Inorg. Chem. 2021, 60, 12870; b) Pandey, A. K.; Rath, S. P. Inorg. Chem. 2020, 59, 12988; c) Khan, F. S. T.; Rath, S. P. Inorg. Chem. 2018, 57, 11498.
5. a) Sarkar, S.; Khan, F.S.T.; Guchhait, T.; Rath, S. P. Coord. Chem. Rev. 2023, 000, 0000; b) Mondal, P.; Rath, S. P. Coord. Chem. Rev. 2020, 405, 213117; c) Guchhait, T.; Sasmal, S.; Rath, S. P. Coord. Chem. Rev. 2017, 337, 112.