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The electronic structure of few-electron atoms (in particular near their critical charge):
In most of its electronic states (except the states that correspond to non-vanishing electron
affinities), the critical charge of an N -electron atom is Zc = N − 1. Upon approaching this
critical charge from above, the outermost electron becomes a diffuse hydrogen-like orbital,
with an effective charge Z−Zc. The binding energy of an outermost electron of type nℓ can
be written as

ǫnℓ = −
(Z − Zc)

2

2(n− δnℓ)
,

where δnℓ is the “quantum defect”. Over the past several years I have reported evidence that

lim
Z→Zc

δnℓ(Z) = nℓ ,

where nℓ is the number of ℓ-type occupied subshells, in the core. This limiting behavior has a
nice heuristic interpretation, but its rigorous derivation remains elusive. In the high Z limit
of the N -electron atom (ignoring the onset of relativistic effects) all the orbitals become
asymptotically hydrogen-like. These observations imply that, for open-shell isoelectronic
sequences the term splitting within a common configuration vanishes at the critical charge
and grows linearly in Z for high nuclear charges. Hence, the term splitting divided by the
square of the nuclear charge vanishes at both Zc and at Z → ∞, possessing a maximum
in between these two limits. I recently observed (combining the virial and the Helmann-
Feynman theorems), that the difference of interelectronic repulsions can be obtained as

∆C = −Z3
∂

∂Z

(

∆E

Z2

)

.

This observation, combined with the non-monotonicity of ∆E
Z2 pointed out above, sheds new

light on an issue that I studied many years ago, establishing the inevitability of the fact that
in neutral atoms and moderately charged positive ions the interelectronic repulsion is higher
in the lower energy state, within an open-shell configuration (contrary to some speculations
offered in the literature, even recently). My work on these issues in the early seventies of the
previous century culminated in a revised understanding of the dynamical origin (“interpreta-
tion”) of Hund’s rule ordering in open-shell atoms [that, though sometimes misrepresented,
affected the textbook presentation of this topic. In some recent textbooks (e.g., Atkins,
Molecular Quantum Mechanics, 2003 and further editions) this revised treatment attains
the ultimate status of “common knowledge” by being introduced without reference]. An
appropriate modification of the relation quoted above accounts for the fact that in flat-
bottomed quantum dots no reversal of the interelectronic repulsions takes place. My current
interests in this area involve the examination of heavy open-shell atoms, transition metal
and lanthanide complex ions, and bulk ferromagnetic materials, looking for observable conse-
quences of the dependence of the spatial wavefunction on the value of the total spin. These
include relative magnitudes of transition probabilities and the splitting, due to spin-orbit
coupling, of different terms that belong to a common configuration.
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Efficient combinatorial algorithms for the characters of the symmetric group and
for the structure constants in its group-algebra:
Though these are mathematically solved problems, they become computationally intractable
even in applications to systems consisting of a moderate number of identical particles. Some
powerful simplifications (some of which also apply to the unitary groups, the quantum uni-
tary groups, and to the Hecke algebra of the symmetric group) were elucidated in a series of
articles that I published between the mid eighties and the late ninties [that became textbook
items, cf. T. Ceccherini-Silberstein et al., Representation Theory of the Symmetric Group,
2010]. A result that can be stated non-technically is that the irreducible representations of
the symmetric groups are fully characterized by a small subset of characters of single-cycle
conjugacy-classes, and those of the quantum unitary groups are fully characterized by their
fundamental (“quadratic”) Casimir operator. These results were applied to symmetry adap-
tation of many-body wavefunctions and to the construction of hyperspherical wavefunctions.
They were implemented in a widely applied nuclear shell-model code. I have recently es-
tablished (joint work with A. Rattan) the equivalence to Kerov’s approach (that he only
reported in a seminar in Paris shortly before untimely passing away in 2000). Further elu-
cidation of certain rather challenging details of the underlying formalism is definitely called
for, and I intend to keep trying for a while.

Combinatorics of boson normal ordering:
A modest study, establishing the role of the Stirling numbers in the normally-ordered expres-
sion for the k’th power of the boson number operator, that I published in 1974, was followed,
during the quantum group hype of the early ninties, by a generalization to q-bosons (joint
work with Maurice Kibler). It triggered a mini-avalanche of activity that is still responsible
for a steady output of generalizations [comprehensively reviewed by Mansour, Combinatorics

of set partitions, 2013]. I have also studied related issues concerning generalized boson oper-
ators and generalized coherent and squeezed states. All these are of interest both because of
their potential physical applications and because of the rich algebraic combinatorics involved.

Permutational symmetry classification of identical higher-spin particles:
My original interest in this issue was motivated by the fact that the simplicity of the cor-
responding problem for spin-1

2
particles, encapsulated by the Dirac identity that associates

a transposition with the scalar product of the individual spin operators of the particles in-
volved, is not shared by higher spins. Specifically, the one-to-one correspondence between
the total spin and the label of the irreducible representation does not hold for systems of
identical particles with elementary spins σ ≥ 1. The current interest in higher spin Bose-
Einstein condensates provides a motivation for further refinement and extension of results
concerning the classification of such systems, that I published over a decade ago.

Is there a bound triplet (1σg, 1σu) (zero bond order) state of a (heavy hole)
biexciton?
Such a state was predicted to be feasible in a polar crystal, where the short-range (high-
frequency) dielectric constant is considerably lower than at long distances (low frequency),
[thesis by Kamer Murat, that I supervised in the late seventies] but so far never observed.
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Recent developments in very low temperature solid state spectroscopy, as well as theoreti-
cal progress that suggests a necessary modification of the Haken-potential assumed in that
study, call for a more up-to-date treatment of this problem. I may get to doing something
about this one of these days.

Some past research highlights that I am unlikely to return to:
Nuclear spectroscopy and thermoluminescnce. Mean-field theory for non-isotropic magnetic
materials [a highlight being a generalized Weiss equation

~S = −
∇sH

|∇sH
σBσ

(

βσ|∇sH|
)

,

that yields the magnetization vector in terms of the gradient of the anisotropic spin-hamiltonian
H(~S)] and for nematic liquid crystals. Reentrance. Generalization of the Bogolyubov-
Tyablikov approximation. The non-linear eikonal approximation [one highlight being the
non-linear self-consistency equation

n(t) = n cos2
(

ǫ

∫ t

o

√

n(τ) + 1dτ

)

,

that is analytically soluble in terms of Jacobi elliptic functions (joint work with David
Hummer), which is relevant to both four-wave mixing and to bistability in the non-linear
Fabry-Perot resonator (joint work with Meir Orenstein and Shammai Speiser)]. The super-
hamiltonian formalism for excited states, allowing the formulation of excited-state, degen-
erate and ensemble Hohenberg-Kohn theorems. Establishing (with Avia Rosenhouse) that
in the classical limit the isospectral solutions of the Korteweg de-Vries equation become
isochronous potentials. Minor involvement in Amitai Halevi’s OCAMS.
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