Structural Biology of Photosynthetic complexes, enzymes, stress related proteins, etc. Renewable energy from direct photosynthetic activity to hydrogen conversion.
The research in the Amitay group focuses on the creation of a new type of photochemistry that is based on ultrafast spectroscopy and quantum coherent control using shaped femtosecond pulses. The Amitay laboratory is equipped with state-of-the-art femtosecond laser systems, and combines ultrafast laser and optical techniques with spectroscopy and vacuum tools.
Our research group is developing novel synthetic approaches to chemically synthesize homogenous posttranslationally modified proteins, such as ubiquitinated and phosphorylated proteins, for structural, biochemical, biophysical and functional analyses.
Mechanochemistry, polymer chemistry and physics, synthesis of polymers with novel architectures, chemistry of materials, relation between chemistry and mechanics.
Fundamental electrochemistry and materials chemistry for energy storage.
Graphitic carbons with complex architectures and multi-doped active sites.
Electrocatalysis in fuel cells, particularly oxygen reduction reaction and oxidation of alternative fuels.
The research in our group is focused on the rational design of new corrole complexes for multiple purposes. After tuning their chemical and photophysical properties by selective synthesis protocols that we devise, the corrole derivatives are introduced as key elements for a variety of applications: catalysis, small molecule activation, catalytic oxidation/reduction of water, drug development, and more.
Nanoscience and nanotechnology; Synthesis, structural and physical characterizations of II-VI and IV-VI quantum dot, rots, wires and platelets, core/shell derivatives, magnetically doped nanostructures, perovskites and single slabs of transition metal chalcogenides; Optical, magneto-optical characterization of ensemble and single nanostructures; Implementation as Q-switches, lasers, solar cells and biological devices.
Research in my lab is focused on biomimetic chemistry and metal coordination aiming to emulate the structure and function of metalloproteins including selective recognition, cooperative catalysis, electro- and photocatalytic water splitting, and self-assembly.
Quantum dynamics and scattering, Open quantum Systems, Charge transport through molecular systems, Driven quantum systems, Molecular electronics, New algorithms for quantum dynamics Simulations.
New methods for fast analysis of particulate materials Fast analysis of particulate materials represents one of the most challenging issues at the forefront of current analytical chemistry. The ability to rapidly analyze particulate materials, including aerosols, hydrosols and soils, may have far-reaching consequences and impact on the environmental sciences, on industrial process control, and on human health. Although analysis of particulate materials has been a long desired goal, it could not be achieved satisfactorily by most of the previously known methods. It is therefore necessary to develop novel strategies and methodological approaches for solving intrinsic problems. The new methods recently developed by Schechter's group for this specific purpose include Fourier Transform (FT) Chemical Imaging, Modified Laser Induced Breakdown Spectroscopy, Laser Multiphoton Ionization, Laser Induced Fluorescence and Cavity Ringdown Spectroscopy. The Schechter group at the Technion has been studying these approaches as well as their combinations for specific tasks. Furthermore, they have also developed analytical sampling methods that are suitable for particulate materials, and methods for sophisticated chemometric data analysis.
Solid state NMR techniques as molecular-functional eyes of materials interfaces and surfaces:
Bioorganic-inorganic interfaces in biomineralization and biomimetics; understanding function-tailored materials properties (biogenic and synthetic).
Specific binding by inorganic and organic mesoporous materials; understanding the molecular details that govern determine reactivity.
Physical and Theoretical Organic Chemistry · Isotope effects on molecular properties, equilibria and kinetics · The dependence of reaction mechanism on state-, orbital- and spin-symmetry
Biomedical Applications of Lasers - Photodynamic therapy (PDT) as a new modality for cancer treatment is studied in solutions, in cell suspensions and in-vivo. - Photosensitizing drugs (porphyrins, porphycenes and phthalocyanines) are graded according to their efficiency to generate singlet oxygen, the phototoxic intermediary. Changes in the triplet lifetimes of the sensitizers are measured as a function of oxygen content in different environments. - Binding of photosensitizers to erythrocytes and to liposomes, differing in composition and surface charge, are studied by absorbance and fluorescence spectroscopy. - The efficiency of oxidative damage, induced by PDT in erythrocytes, liposomes and various tumor cell lines, is monitored electrochemically in real time by the depletion of ambient oxygen. - Structure-activity relationships for different photosensitizers are derived from the correlation between the efficiency of a sensitizer and its 3-dimensional structure. - Novel photosensitizers for PDT are evaluated in-vivo using the chick chorioallantoic membrane (CAM) model. Video microscopy in real time serves to monitor the entire process of tumor growth, DT and tumor regression. Computerized image analysis is used to quantify occlusion of blood vessels nourishing the tumors, and the morphological modifications associated with vasoconstriction, as well as the resulting tumor necrosis.
The Physical Chemistry of Liquid Crystalline Systems - Nuclear magnetic resonance of liquids and liquid crystals. Molecular reorientations and other dynamic processes in liquids. - Nuclear quadrupole coupling constants of deuterium, nitrogen, oxygen and sulfur in small molecules. - The phase diagrams of lyotropic and thermotropic liquid crystals. The structure of liquid crystalline phases. Aliphatic chain and polar-head dynamics in non-ionic liquid crystals. Carbohydrate liquid crystals. alpha,omega-dicarboxylic acids lyotropic liquid crystals. - The properties of the liquid crystalline and gel phases of poly- gamma-benzyl-L-glutamate (PBLG) in different organic solvents. - Application of PBLG-organic solvent liquid crystals to the observation of chiral and prochiral enantiomers by NMR. - The study of the liquid crystalline phases of organic dyes (e.g. benzopurpurin in water) by NMR, X-rays, DSC and optical microscopy.
Condensed-Matter theory: Dynamic and thermodynamic phenomena in condensed phases, with particular focus on interfaces and two-dimensional and quasi two-dimensional structures of matter.
The discovery of novel phenomena in atomic, molecular, mesoscopic, and biochemical systems which interact with light that is hard to predict and explain by using the standard formalism of quantum mechanics. In particular to show how decaying processes and interaction with the environment that introduce dephasing, dissipation and relaxation processes play key roles in introducing time asymmetric dynamics which are very robust and stable against small external perturbations.
General theory of nonadiabatic transitions: multi-state semiclassical approach, analytical models, surface hopping approach, transitions near the conical intersections.
Quasiclassical theory of inelastic collisions: eikonal approximation beyond the common trajectory approach, semiclassical description of polarization phenomena and charge transfer. Vibrational and electronic energy transfer in molecular collisions.
Quantum theory of inelastic collisions at low and ultra-low energies. Application to the vibrational relaxation of molecules in collisions with atoms in the Bethe-Wigner regime.
Stochastic approach to the intramolecular energy redistribution: diffusion across the energy space in the chaotic regions of molecular phase space, master equation and discrete Markov chain equation. Application to the vibrational predissociation.
Statistical and dynamical description of the complex formation and decay: incorporation of nonadiabatic effects into the adiabatic channel model of unimolecular reactions, formulation of the capture theory in the axially-nonadiabatic channel basis, application to the complex formation at low and ultra-low energies.
Theory of electron attachment/detachment to/from polyatomic molecules. Generalization of the Vogt-Wannier and zero-range potential models.
Molecular Dynamics: Energy Transfer · Supercollisions: Collisions that transfer an inordinately large quantity of energy per a single collision are called supercollisions. They were first found experimentally by us in 1988 and theoretical work has since continued on the subject. The effect of a minor fraction of supercollisions on the rates of chemical reactions is evaluated and their contribution to the overall average energy transfer is calculated. · Trajectory calculations: Classical trajectory calculations of collisions between bath atoms and molecules and highly excited polyatomic molecules are performed. Using ab initio and assumed inter- and intramolecular potentials, average energy transferred per collision quantities and collisional energy transfer probability density functions are calculated for an assortment of polyatomic-monatomic and polyatomic-polyatomic systems and a variety of initial conditions. · Cluster dissociations: The dynamics of large molecules with up to 1000 internal modes, as well as cluster dissociation are studied for a variety of initial conditions.
Physical Chemistry, Solid StateMolecular spectroscopy of organic molecules in condensed phases: single crystals, solutions, molecules imbedded in rare gas matrixes and adsorbed molecules on surfaces. Spectroscopic studies of semiconductors and their quantum structures.Study of the elementary excitations: excitons, phonons, their dynamics and the interaction between them. Experimental techniques: luminescence, excitation spectra, resonance Raman, Raman excitation profile, microwave modulated spectroscopy and time-resolved spectroscopy. All measurements are carried out at cryogenic temperatures.