seminars

Perovskite Nanocrystals-Based Solar Cells

Physical and Analytical Chemistry Seminar

Lecturer: Arthur Shapiro

Date:
23-23 Jul 2019 @ 15:30

Location: Faculty Seminar Room

Abstract:

In the last decade perovskite nanocrystals (NCs) burst into the scientists’ consciousness as a new class of semiconductors and became the materials in forefront of research efforts. The first efforts1-3 and followers4-10 showed the great potential of perovskites as absorbing layer in photovoltaics and have triggered numerous fundamental studies of their features.11-13 These materials are of enormous interest due to their intriguing optoelectronic properties such as high quantum yield without surface passivation14 and narrow emission line widths. One of the most striking features of them is their high tolerance towards defects.15 Also, the pioneer work by Kovalenko and coworkers displayed a practical colloidal synthesis procedure at low temperatures for the formation of perovskite NCs.16  This simple method opened new horizons for the fabrication of perovskite nanomaterials with different morphologies, by adjusting their composition and the synthesis’ temperature.17-20

References

  1. Kojima, A.;  Teshima, K.;  Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
  2. Burschka, J.;  Pellet, N.;  Moon, S.-J.;  Humphry-Baker, R.;  Gao, P.;  Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316.
  3. Lee, M. M.;  Teuscher, J.;  Miyasaka, T.;  Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (6107), 643-647.
  4. Kazim, S.;  Nazeeruddin, M. K.;  Grätzel, M.; Ahmad, S., Perovskite as Light Harvester: A Game Changer in Photovoltaics. Angewandte Chemie International Edition 2014, 53 (11), 2812-2824.
  5. Stranks, S. D.; Snaith, H. J., Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nano 2015, 10 (5), 391-402.
  6. Christians, J. A.;  Fung, R. C. M.; Kamat, P. V., An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. Journal of the American Chemical Society 2014, 136 (2), 758-764.
  7. Etgar, L.;  Gao, P.;  Xue, Z.;  Peng, Q.;  Chandiran, A. K.;  Liu, B.;  Nazeeruddin, M. K.; Grätzel, M., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. Journal of the American Chemical Society 2012, 134 (42), 17396-17399.
  8. Gonzalez-Pedro, V.;  Juarez-Perez, E. J.;  Arsyad, W.-S.;  Barea, E. M.;  Fabregat-Santiago, F.;  Mora-Sero, I.; Bisquert, J., General Working Principles of CH3NH3PbX3 Perovskite Solar Cells. Nano Letters 2014, 14 (2), 888-893.
  9. Kim, H.-S.;  Mora-Sero, I.;  Gonzalez-Pedro, V.;  Fabregat-Santiago, F.;  Juarez-Perez, E. J.;  Park, N.-G.; Bisquert, J., Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Communications 2013, 4, 2242.
  10. Colella, S.;  Mosconi, E.;  Fedeli, P.;  Listorti, A.;  Gazza, F.;  Orlandi, F.;  Ferro, P.;  Besagni, T.;  Rizzo, A.;  Calestani, G.;  Gigli, G.;  De Angelis, F.; Mosca, R., MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. Chemistry of Materials 2013, 25 (22), 4613-4618.
  11. Kang, J.; Wang, L.-W., High Defect Tolerance in Lead Halide Perovskite CsPbBr3. The Journal of Physical Chemistry Letters 2017, 8 (2), 489-493.
  12. Mondal, N.; Samanta, A., Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3). Nanoscale 2017, 9 (5), 1878-1885.
  13. Kulbak, M.;  Cahen, D.; Hodes, G., How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. The Journal of Physical Chemistry Letters 2015, 6 (13), 2452-2456.
  14. Akkerman, Q. A.;  Rainò, G.;  Kovalenko, M. V.; Manna, L., Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials 2018, 17 (5), 394-405.
  15. Huang, H.;  Bodnarchuk, M. I.;  Kershaw, S. V.;  Kovalenko, M. V.; Rogach, A. L., Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance. ACS Energy Letters 2017, 2 (9), 2071-2083.
  16. Protesescu, L.;  Yakunin, S.;  Bodnarchuk, M. I.;  Krieg, F.;  Caputo, R.;  Hendon, C. H.;  Yang, R. X.;  Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters 2015, 15 (6), 3692-3696.
  17. Akkerman, Q. A.;  Motti, S. G.;  Srimath Kandada, A. R.;  Mosconi, E.;  D’Innocenzo, V.;  Bertoni, G.;  Marras, S.;  Kamino, B. A.;  Miranda, L.;  De Angelis, F.;  Petrozza, A.;  Prato, M.; Manna, L., Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. Journal of the American Chemical Society 2016, 138 (3), 1010-1016.
  18. Liang, Z.;  Zhao, S.;  Xu, Z.;  Qiao, B.;  Song, P.;  Gao, D.; Xu, X., Shape-Controlled Synthesis of All-Inorganic CsPbBr3 Perovskite Nanocrystals with Bright Blue Emission. ACS Applied Materials & Interfaces 2016, 8 (42), 28824-28830.
  19. Balakrishnan, S. K.; Kamat, P. V., Ligand Assisted Transformation of Cubic CsPbBr3 Nanocrystals into Two-Dimensional CsPb2Br5 Nanosheets. Chemistry of Materials 2018, 30 (1), 74-78.
  20. Bekenstein, Y.;  Koscher, B. A.;  Eaton, S. W.;  Yang, P.; Alivisatos, A. P., Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. Journal of the American Chemical Society 2015, 137 (51), 16008-16011.